クライアントサイド版COSUMIを作ってみました

このブログ記事は、以前書いた記事の続きです。よろしければ、そちらもどうぞ。

Keras/TensorFlowでDNNな囲碁の評価関数を作ってみる
http://www.perfectsky.net/blog/?p=350

Keras/TensorFlowでDNNな囲碁の評価関数を作ってみる その2
http://www.perfectsky.net/blog/?p=380

囲碁の思考エンジンを作ってみる
http://www.perfectsky.net/blog/?p=389

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

以前から作っていた囲碁思考エンジン「white shade」を、JavaScriptに書き直してブラウザで打てるようにしてみました。COSUMIのクライアントサイド版です。

white shade – 囲碁ブラウザゲーム COSUMI
https://www.cosumi.net/whiteshade.html

今現在は9路盤しかできませんが、強さはレベル1からレベル4まで選択できるようになっています。それぞれのレベルでの強さは、一応、通常版のとできるだけ合わせましたが、通常版を手元で再現するのがちょっとめんどくさくて、なかなか完璧にはいっていません。一応、クライアントサイド版では、レベル1はGNU GoのLevel 7に勝率60%、レベル4はFuego1.1の7000playoutに勝率50%、それ以外のレベルは、1レベル違いの自己対戦の勝率が同じになるようにしていきます(これでまあだいたい通常版と同じです)。最終的には、通常版にも無いレベル7ぐらいまで行きたいですね。まだやれることはたくさんあるので、それぐらいはなんとかなりそうな気はしています。現状は、目一杯の設定で、だいたいレベル4.5ぐらい。GNU Goに一局あたり平均16目ぐらい勝てるのですが、それでも勝率は90%を辛うじて超える程度で、100%っていうのはやはりかなり大変そうですね。

レベル1では、4子までの置き碁もできるようにしました。GNU Goにこれをさせると怪しいことになるのでちょっとあれなんですが、white shadeは、どれだけ形勢が悪くても結構自然に打つので、特に問題は無さそうです。今後はもっと大きな碁盤サイズでも対局できるようにしていきますが、8路盤以下は、もうこれで許してください…

JavaScriptのDNNライブラリ(って呼んでいいのかな?)は、TensorFlow.jsを使っています。私も使えたので(笑)、たぶんそんなに難しいものではないです。元々のPython版white shadeも、GTPとかデバッグ用のコードとかもろもろ除けば、実質200行ぐらい(?)のプログラムだったので、JavaScriptに書き直すのも大した手間ではありませんでした。一番たいへんだったのは、先ほどの強さの調整ですね。きれいに弱くするということがこんなに難しいことだとは、本当に思っていませんでした。後、少し心配しているのが、JavaScript版にした時に、NNのモデルのコンバートなんかで弱くなってたりしていないかなんですが、自分が打っている限りでは、大丈夫なように見えます。JavaScript版の強さの計測は、これも今後ちょっと厄介ですね。

簡単にwhite shadeの中身についても、書いておくと、基本的に、左上から右下まで本当に全幅で1手読んでるだけですが、人の手のみを学習したPolicy Networkの出力も少しだけ加味して手を決定していて、あとは、自然に打てるように微調整ですね。レベル4が少し重いかもですが、それ以外のレベルは、ちゃんと動きさえする環境ならば、おそらくサクサクだと思います。で、問題はそのちゃんと動く動作環境なんですが、今現在、iPhone/iPadのiOS系が安定して動かないと思います(後、IEもですがこれはもう本当にどうでもいい。Androidはちょっと分かっていません)。これは結構色々調べたのですが、まず、iPad+Chromeはだめで、Mac+Safariは大丈夫なので、iOSがだめっぽいのですが、NNのモデルを小さいものに変更するとかなり安定するようになるので(ちなみに今現在、Value Networkが92万、Policy Networkが45万パラメータぐらい。本当はもっと大きなNN使いたいぐらいなのに…)、端末が非力なことが単純に問題なのかもしれません。とはいえ、とりあえず動くだけは動いて欲しいのですが… iPhoneで動かない限り、トップページからのリンクもちょっと張れません。これはまた、なんとかします。

今現在、COSUMIは年間のサーバ代(最初に掛かった初期費用は入れず)が130万ぐらい掛かっているのですが、それがこのクライアントサイド版でいつか半分ぐらいにならないかなあと、つい皮算用してしまいます。私は今、車が欲しいんです(笑)。生まれてこのかた、一度も車なんて買ったことないのですが、今猛烈に欲しいんですね。軽でいいんですけど、新車が欲しい(笑)。そのためにも、このサーバ代はなんとかしなければいけません。話変わりますが、なんかネット見ていたら、さくらインターネットからお中元が来たって方がちょくちょくいるのですが、今までに新車のポルシェ一台分ぐらい貢いだ私はもらったことがない!(笑) うー、まだ足らないのかな… おいらもチョコが食べたい。

[追記 2018/9/2]
今回は、white shadeで囲碁の対局をできるようにしたわけですが、いつかは、9路盤以下の悪手指摘機能をこれで置き換えたいですし、もっと言うと、white shade Teach作りたいですね。この場合、teachするのは、囲碁というよりも、white shadeの囲碁に対する気持ちぐらいでしかありませんが(笑)、それでも、初心者の方には、十分有益なような気がします。忙しいので当面の間は無理ですが、またいつかがんばります。

[追記 2019/1/5]
ブラウザがロードするTensorFlow.jsのライブラリのバージョンを上げたら、iOSでもwhite shadeが動くようになったみたいです(やほい!)。ひさしぶりに私も対戦してみましたが、この子、そんなに弱くはないのですが、ときどきとんでもない転び方するので、ちょっと面白いです。ぜひiPhoneで一局打ってみてください。

今現在、9路盤以外でも対局できるように準備していますので、そちらはもうしばらくお待ちください。

COSUMI 10周年

[以前の関連記事] : COSUMI 5周年

今日2018年5月26日で、COSUMIは開始から10周年を迎えることになりました(実は、黒嘉嘉と誕生日がいっしょなんです(笑)。あっ、先生お誕生日おめでとうございます)。

囲碁ブラウザゲーム COSUMI
https://www.cosumi.net/

10年間の総ページビューは、221,499,920(におくにせんまん…)。もう本当に訳の分からない数字ですが、個人的には、セッション数59,413,618と平均セッション時間12分22秒という2つの数字が一番やばいと思っています。単純に掛け算すると約1398年。人生80年だとすると、17.47人分ですよ!(もう怖えーよ…) そして、COSUMIは10年間通算で、40,599,753敗しました。うーん、たくさん負かされましたね。究極の目標は1億敗なんですが、いつか達成できる日が来るのでしょうか?

10年間のページビューの推移(ともろもろ)です。

基本的にCOSUMIは、非常にゆるやかな右肩上がりをずっと続けてきました。このグラフを形作っているのは、そのほとんどがCOSUMI固有の要因だと言えると思いますが、その中で、唯一といっていいほど例外的に、外部的な要因で大きくアクセス数が変動したのが、2016年3月のAlphaGo-セドル戦で、結局のところ、この10年の間に起こった、囲碁をやらない人までを巻き込んだ大きな囲碁の話題って、この時一回きりだったのだと思います。AlphaGo-柯潔戦とか、井山七冠達成とかは、ニュースバリューがほとんどなかったと見るべきでしょう。

COSUMIの今後については、現時点ではあまりはっきりしたことは言えませんが、新しい機能の追加とかはもうあまりないと思ってください。ただし、使用している囲碁の思考エンジンは、最近、急に出てきた非常に強いオープンソースのソフトや、今現在、私が作っているソフトに、部分的には置き換えられていく可能性が高いと思います。たぶん、そのあたりが今COSUMIに一番足らない部分ではないでしょうか?

そして、ここ最近、私がよく考えていることとして、「いつまでCOSUMIを続けるのか」っていうのがあるのですが、一応、最低でもあと5年は続けたいなと思っています。ただ、それ以降については、私ではなく時代が決めることなのかなという気がしています。

似たような内容のことを、このブログでも何度か書いていると思いますが、COSUMIを最初に作っていた時は、10年後、まさかこんなことになるとは、夢にも思っていませんでした。驚くほどたくさんの方に遊んでいただきましたが、一番楽しんだのは自分自身なんだということについては、よく理解しているつもりです。これも以前からの繰り返しになりますが、すばらしいソフトウェアを自由に使わせてくださっているGNU GoとFuegoの開発者の方にも、再度お礼申し上げます。そして、今までCOSUMIで遊んでくださった方々へ。10年間、本当にありがとうございました。感謝しています。

10周年にかけて、10路盤の対局ができるようにしてみました(笑)。強さはLevel 1相当です。COSUMIは黒しか持たないようになっています。これは、今だけの期間限定です。一週間ぐらいしたらまた元に戻しておきます。

[以後の関連記事] : COSUMI 15周年

[追記 2018/5/27]
セッション数と平均セッション時間を掛けた1398年という数字は、ユーザがCOSUMIを見ていてくれた延べ時間ぐらいの意味で出したのですが、実情は、おそらくそんなものではありません。古いログは解凍するのも恐ろしいので(笑)、きちんとした数字を出すのはここではやりませんが、例えば、この2週間の間にCOSUMIが打った手数が70,843,582手(+α)、同期間のページビューが1,623,460pvで、割り算すると43.6手/pvぐらいです。それに、全期間のページビューを掛けると約96.7億手(本当によく知らないけど、AlphaGoといい勝負になってない?(笑) GNU Goは軽いですね)。COSUMIでは、これに10秒掛けたのがだいたい対局時間と考えてよいので、そうなると約3065年になります。これはかなり適当な計算ですが、とはいえ、対局リプレイを見ている時間なども含まれていません。

囲碁の思考エンジンを作ってみる

このブログ記事は、以前書いた記事の続きです。できれば、まずはそちらをお読みください。

Keras/TensorFlowでDNNな囲碁の評価関数を作ってみる
http://www.perfectsky.net/blog/?p=350

Keras/TensorFlowでDNNな囲碁の評価関数を作ってみる その2
http://www.perfectsky.net/blog/?p=380

時間ができたので、以前から作っていたDNNな囲碁の評価関数を使って、囲碁の思考エンジンを作ってみました。「パスも含めて全幅で深さ1だけ読む」という単純なプログラムです。9路盤しか打てません。一応、名前も必要かと思ったので、コードネームだったのをそのまま使って、white shadeと名づけました。由来は、Procol Harumの例の曲です。特にそれ以上の深い意味はありません。ちなみにこの映像は、ちょうど今から50年前のものみたいですが、ポピュラー音楽って本当に進歩がないですね。コンピュータ囲碁は、この5年だけでもめっちゃくちゃ強くなったのに…(笑)

ということで、早速、GNU Goとの対戦を行ってみました。使用した評価関数は、BottleneckアーキテクチャになっているRes-Blockのネックの部分が、32Filterなのと48Filterなのとの2種類。共に10 Res-Block(ちなみに、32Filterはパラメータ数が210,769で、48Filterは368,529。できれば、このあたりのサイズで何とかしたい…)。それぞれ、8対称形の平均をとったのと、とらないのとの、計4種類です。対局数は、先後を換えて150局ずつ計300局。同じような対局ばかりになりがちなので、twogtpに付属していたオープニングブックを使用しています。結果は、

32Filter 106勝194敗 (勝率 35.33%)
32Filter/8対称形の平均 144勝156敗 (勝率 48.00%)
48Filter 128勝172敗 (勝率 42.67%)
48Filter/8対称形の平均 176勝124敗 (勝率 58.67%)

うーん、よくわからんけどまあこんなものかな? とりあえず、ここがスタートですね。棋譜を見ていると、序盤はかなり上手なんですが、この子どうやらアタリがよく分かってないみたいで(笑)、後半すさまじいファンタを見せてくれます。一番強い48Filterの8対称形平均版から適当に3局選んでみたので、ご覧ください。


Sorry, your browser doesn’t support WGo.js.

Sorry, your browser doesn’t support WGo.js.

Sorry, your browser doesn’t support WGo.js.

こんなのに半分以上負けるGNU Goもどうなのよって感じですが(笑)、まあ強い時は強いからしかたないか… でもって、何でこんなにアタリがわからないのかっていうと、いろいろ理由はあるんでしょうが、おそらく一番大きいのは、学習データにこういう局面があまり含まれていないからだと思います。もちろん、大石がアタリになっている局面はそれなりの数あるのですが、そのほとんどが、アタリにされている方の手番になっていて、つぐなり逃げるなりすれば大事にならないので、それで深刻なことだと学習できていない気がします。NNの入力にダメの数を入れるとか、深さ2読むとかしたら、ここまでひどいことにはたぶんならないと思いますが、そんなことしなくても評価関数だけでこれぐらいは分かってほしいですし、こんなことも分からなくて、もっと高度なことが分かるはずもないような気がするので、なんとかしたいのですが、どうするのがいいかな? 「いっぱい対局させて、それをRayに添削してもらって、酷そうな手の前後を学習データに追加していく」みたいな感じでだめかな? また少し試してみます。

9路盤での最終的な目標は、GNU Goに対して1局平均10目勝ちです(今はだいたいイーブンぐらい)。勝率はあまり気にせず、そこを目指していきたいと思っています。そこまでいけたら、ブラウザで打てるようにしたいですね。

いろいろやっている間に、Rayが出してくれる形勢判断が常に1目ずれていること(黒番の時と白番の時で向きが逆、平均すれば0。簡易的な日本ルール対策?)に気づいて、その分を修正しようとしたのですが、今度は別のところで矛盾が生じてきて絶賛混乱中です。もう一目ぐらいどうでもいいか… あと、現在、Policy Networkも作っています。Value Networkもそうですが、よくこんなのでちゃんとしたアウトプットが出てきますね… なんだか、狐につままれた気分です。

あとあと、CapsNetで囲碁やった人とかいないんでしょうか?

[追記 2018/5/6]
最近、Policy Networkを作っているのですが、学習データを普通の棋譜からランダムに切り出して使ったりすると、結構ラベルに偏りが出てくるのが気になります。ということで、囲碁で一局を通して、座標ごとにどれぐらいの回数打たれるのかっていうのを調べてみました。例えば、COSUMIの9路盤のレベル1の作り碁ならこんな感じ。一番打たれる回数の多い場所を100として、それとの割合です。

 14  29  40  52  59  52  40  29  14
 30  44  56  68  71  67  55  44  30
 40  56  76  86  88  86  75  56  41
 53  68  87  96  95  96  86  68  54
 60  73  89  95 100  95  88  73  60
 54  68  87  97  94  95  86  68  53
 41  57  76  86  87  85  75  56  41
 30  45  56  68  71  67  56  44  30
 15  31  41  53  59  52  40  30  14

そして、レベル5ではこんな感じです。

 24  48  56  67  71  67  57  48  24
 48  64  74  82  85  82  74  64  48
 57  74  89  95  97  95  89  75  57
 67  83  96  99  98  99  95  83  67
 71  86  97  99  99  98  97  86  72
 67  83  95 100  98  99  95  83  68
 57  74  89  95  96  94  88  74  56
 48  65  74  83  86  83  74  64  47
 25  48  57  67  71  67  57  48  25

どうでしょう、ちょっと不安になってきませんか?

今現在、学習に使っているデータは、COSUMIの棋譜から取って、いくつかの条件でふるいをかけたものですが、それの検証用データのラベルの合計がこちら。これを[1]とします。

 1628 2786 3627 4372 4508 4372 3627 2786 1628
 2786 4038 4507 5506 6126 5506 4507 4038 2786
 3627 4507 5296 6662 6550 6662 5296 4507 3627
 4372 5506 6662 8024 6928 8024 6662 5506 4372
 4508 6126 6550 6928 7928 6928 6550 6126 4508
 4372 5506 6662 8024 6928 8024 6662 5506 4372
 3627 4507 5296 6662 6550 6662 5296 4507 3627
 2786 4038 4507 5506 6126 5506 4507 4038 2786
 1628 2786 3627 4372 4508 4372 3627 2786 1628

そして、そのデータと同じ作り方をしている学習用データで学習したNNで、先ほどの検証用データを予測させた時の最後のsoftmaxの出力をそのまま合計したのがこちら(この数字をここで使うことが正しいのかがちょっと確信持てませんが…)。これを[2]とします。

 1584 2745 3695 4300 4598 4301 3668 2754 1594
 2735 3890 4561 5532 6039 5525 4578 3922 2746
 3678 4605 5399 6763 6706 6754 5334 4583 3663
 4272 5503 6705 7787 7231 7720 6611 5479 4303
 4623 5987 6656 7232 7764 7128 6517 5946 4598
 4308 5513 6673 7657 7236 7645 6586 5511 4306
 3756 4626 5447 6669 6662 6638 5312 4612 3694
 2820 3924 4578 5491 5972 5544 4613 3944 2766
 1609 2763 3694 4276 4583 4272 3667 2726 1592

それぞれの座標で、[2]/[1]*100したのがこちら。

  97  99 102  98 102  98 101  99  98
  98  96 101 100  99 100 102  97  99
 101 102 102 102 102 101 101 102 101
  98 100 101  97 104  96  99 100  98
 103  98 102 104  98 103 100  97 102
  99 100 100  95 104  95  99 100  98
 104 103 103 100 102 100 100 102 102
 101  97 102 100  97 101 102  98  99
  99  99 102  98 102  98 101  98  98

ほんの少しだけ、それっぽい傾向が見受けられるような気もしますが、まあこれぐらいならぜんぜんOKでしょうかね? とりあえずは気にしないことにします。

[追記 2018/5/25]
「white shadeの棋譜をRayに添削してもらって、悪手っぽいところの前後を学習データに追加して、それをもう一度学習する」ってやり方で、いきなりGNU Goに1局平均10目ぐらい勝てるようになったのですが、それってそれなりの棋力がないとできないはずだと思って実際に棋譜を眺めてみても、そこまで強そうには見えません。どうも、最後にねちねちやられてGNU Goが自爆していることが、ちょくちょくあるからみたいです。手法自体はかなり有効そうなので、目標を「1局平均20目」に変更して、現在、二周目やってます。

[追記 2018/8/29]
ブラウザで対局できるようにしてみました。続きの記事をどうぞ。

クライアントサイド版COSUMIを作ってみました
http://www.perfectsky.net/blog/?p=402

Keras/TensorFlowでDNNな囲碁の評価関数を作ってみる その2

このブログ記事は、以前書いた記事の続きです。できれば、まずはそちらをお読みください。

Keras/TensorFlowでDNNな囲碁の評価関数を作ってみる
http://www.perfectsky.net/blog/?p=350

ずいぶん長い間ほったらかしにしていたのですが、そろそろ自分でも、囲碁の思考エンジンを作ってみたいと思い、ここ最近、久しぶりに以前作っていたディープラーニングな評価関数の作成の続きをやっています。

ただ、思いつくことはある程度、前回の時に試していたこともあって、ほとんどの試行はたいした改良に繋がらないのですが、その中で唯一、非常に大きく数字が改善したのが、Squeeze-and-Excitation Networks(SENet)というやつです。

[1709.01507] Squeeze-and-Excitation Networks
https://arxiv.org/abs/1709.01507

このモデルがどのようなものかを解説するのは、私にはちょっと難しいので、詳しくはリンク先を読んでいただくとして、以下簡単に、私が試してみたテスト内容とその結果を書いてみたいと思います。

現在、最終的にはクライアントサイドで思考エンジンが動くウェブアプリの制作を目標にしていて、その関係もあって、とりあえず今回は9路盤です。データの作成方法などは前回とほぼ一緒。対称形に8倍して切りの良い数字にまで少し減らして、230万局面分。95%を学習用に、5%を検証用に使います。

NNのモデルは、基本的に、前回の最後の方で使っていた普通のResNetみたいなのが性能良いのでは、と思っているのですが、今回は非力なスマホなどでも動かしたいので、できるだけ小さなモデルにしなければいけません。特に、パラメータ数は、モデルのファイルサイズになってネットワークの転送量とかにまで影響してくるので、少ないにこしたことはないように思います。ということで、Residual Block内は1×1 -> 3×3 -> 1×1のいわゆるBottleneckアーキテクチャにしました。そもそも、たかだか19×19の囲碁で、3×3のConvが30も50も重なるのって、なんかおかしいような気が以前からしていて、なんというか、そんな遠くの場所よりも、まずはもっと近いところとの関係をよく見ないといけないのではと、つい思ってしまうんですよね… 9路盤なんか、たった4つの3×3のConvで、天元のところにすべての座標の入力の情報が来るわけで、そういう意味でも、3×3を一定量1×1に置き換えるのは、理にかなっているような気がしています。「5×5は3×3が2つの方が良いように、3×3はdepthwiseとpointwiseに分けたほうが良い」みたいなことを言われてしまうと、確かに3×3のConvはちょっと大きすぎですよね… 囲碁だったら、四隅の欠けた3×3の、「十字型」なんかどうなんでしょうか?

ってすみません。話がそれてしまいました。元に戻って今回のNNのモデルですが、前回からの変更点としてもうひとつ、入力層の所でまず、周囲をゼロパディングして、9×9だったフィールドを13×13に広げています。これはパラメータ増やさず、ロスを下げます。やっぱり9×9って小さすぎるんですよね、ってまた似たような話に…(笑)

入力は、「手番のプレーヤーの石の配置」、「相手の石の配置」、「コウで打てない場所」、「全部1」の4面(9,9,4)です。最後の「全部1」と、先ほどの入力層でのゼロパディングで、盤上/盤外を表現したつもりです。

その他の条件は、だいたい前回と同じかな?

コードはこんな感じ。まずは「SENetなし」。

BOARD_SIZE = 9
FIELD_SIZE = 13


def rn_block(input):

    relu_1 = Activation("relu")(input)
    bn_1   = BatchNormalization()(relu_1)
    conv_1 = Conv2D(32, (1, 1))(bn_1)

    relu_2 = Activation("relu")(conv_1)
    bn_2   = BatchNormalization()(relu_2)
    conv_2 = Conv2D(32, (3, 3), padding='same')(bn_2)

    relu_3 = Activation("relu")(conv_2)
    bn_3   = BatchNormalization()(relu_3)
    conv_3 = Conv2D(128, (1, 1))(bn_3)

    return conv_3


input = Input(shape=x_train.shape[1:])

main    = ZeroPadding2D(padding=(int((FIELD_SIZE-BOARD_SIZE)/2), int((FIELD_SIZE-BOARD_SIZE)/2)))(input)
rn_fork = Conv2D(128, (3, 3), padding='same')(main)

main    = rn_block(rn_fork)

rn_fork = add([main, rn_fork])

main    = rn_block(rn_fork)

rn_fork = add([main, rn_fork])

main    = rn_block(rn_fork)

rn_fork = add([main, rn_fork])

main    = rn_block(rn_fork)

rn_fork = add([main, rn_fork])

main    = rn_block(rn_fork)

rn_fork = add([main, rn_fork])

main    = rn_block(rn_fork)

main    = add([main, rn_fork])

main    = Activation("relu")(main)
main    = BatchNormalization()(main)
main    = Conv2D(1, (3, 3), padding='valid')(main)
main    = AveragePooling2D(pool_size=(FIELD_SIZE-2, FIELD_SIZE-2))(main)

output  = Flatten()(main)

そして「SENetあり」。

BOARD_SIZE = 9
FIELD_SIZE = 13


def rn_block(input):

    relu_1 = Activation("relu")(input)
    bn_1   = BatchNormalization()(relu_1)
    conv_1 = Conv2D(32, (1, 1))(bn_1)

    relu_2 = Activation("relu")(conv_1)
    bn_2   = BatchNormalization()(relu_2)
    conv_2 = Conv2D(32, (3, 3), padding='same')(bn_2)

    relu_3 = Activation("relu")(conv_2)
    bn_3   = BatchNormalization()(relu_3)
    conv_3 = Conv2D(128, (1, 1))(bn_3)

    return conv_3


def se_block(input):

    ap      = AveragePooling2D(pool_size=(FIELD_SIZE, FIELD_SIZE))(input)
    conv_1  = Conv2D(8, (1, 1))(ap)
    relu    = Activation("relu")(conv_1)
    conv_2  = Conv2D(128, (1, 1))(relu)
    sigmoid = Activation("sigmoid")(conv_2)
    us      = UpSampling2D(size=(FIELD_SIZE, FIELD_SIZE))(sigmoid)

    return us


main    = ZeroPadding2D(padding=(int((FIELD_SIZE-BOARD_SIZE)/2), int((FIELD_SIZE-BOARD_SIZE)/2)))(input)
rn_fork = Conv2D(128, (3, 3), padding='same')(main)

#main    = rn_block(rn_fork)
se_fork = rn_block(rn_fork)
se_out  = se_block(se_fork)
main    = multiply([se_fork, se_out])

rn_fork = add([main, rn_fork])

#main    = rn_block(rn_fork)
se_fork = rn_block(rn_fork)
se_out  = se_block(se_fork)
main    = multiply([se_fork, se_out])

rn_fork = add([main, rn_fork])

#main    = rn_block(rn_fork)
se_fork = rn_block(rn_fork)
se_out  = se_block(se_fork)
main    = multiply([se_fork, se_out])

rn_fork = add([main, rn_fork])

#main    = rn_block(rn_fork)
se_fork = rn_block(rn_fork)
se_out  = se_block(se_fork)
main    = multiply([se_fork, se_out])

rn_fork = add([main, rn_fork])

#main    = rn_block(rn_fork)
se_fork = rn_block(rn_fork)
se_out  = se_block(se_fork)
main    = multiply([se_fork, se_out])

rn_fork = add([main, rn_fork])

#main    = rn_block(rn_fork)
se_fork = rn_block(rn_fork)
se_out  = se_block(se_fork)
main    = multiply([se_fork, se_out])

main    = add([main, rn_fork])

main    = Activation("relu")(main)
main    = BatchNormalization()(main)
main    = Conv2D(1, (3, 3), padding='valid')(main)
main    = AveragePooling2D(pool_size=(FIELD_SIZE-2, FIELD_SIZE-2))(main)

output  = Flatten()(main)

「SENetなし」はResidual Blockが6つと7つの2種類、「SENetあり」はResidual Blockが6つの、計3種類をテストしてグラフにしてみました。

「SENetなし/Residual Block 7つ」と「SENetあり」は、パラメータ数、予測に掛かる時間、1エポックあたりの学習時間などがそれほどは大きく変わらず、それでいてこのロスの差なので、すばらしいです。ILSVRC2017チャンプは伊達ではない(笑)。しばらく忙しいのですぐには無理そうですが、いずれこいつを使って一手全幅君を作ってみたいと思います。

[追記 2018/4/4]
現在使用している学習データのラベルは、Rayに付けてもらったものですが、それをそのデータを学習したDNNで付け替えて、もう一度最初から学習し直したらどうなるのか、試してみました。

学習する局面は上と同じ230万局面分。95%を学習用、5%を検証用に。ネットワーク構成も上のSENetありと基本的に同じで、10 res-blockです。今回の複数のテストでの唯一の違いは学習データのラベルで、まずは次の3種類、

  • [1] Train/ValidateともRayが付けたもの
  • [2] Trainを[1]の50エポック目のDNNが付け、ValidateはRayが付けたもの
  • [3] Train/Validateとも[1]の50エポック目のDNNが付けたもの

です。[3][2]とTrainのラベルが同じなので、Validateだけ調べれば良かったのですが、実際にやってみると、想像以上に低い数字が出て来て自分の書いたコードが信用できなくなり(笑)、念のために、いつもと同じように最初から学習回しながら、Validateを計測してみました(どうやら、自分の書いたコードは合ってたみたい…)。乱数の加減も今回はあまり関係無かったようで、赤の実線は緑の実線にきれいに隠れていますが、そこにあります(一応、少し太くしておいた(笑))。

正直、驚きの結果です。DNNに予測させるのは、Rayにラベルを付けてもらうより、遥かにコストが掛かからないので、「もし、DNNが付けたラベルでそれなりに学習できたら、データの水増しが可能になるかも」ぐらいに思っていたのですが、ばっさりと全部差し替えても全く問題なさそうですし、グラフ見ているだけでははっきりしませんが、囲碁の神様が付けたラベルに対して、[1]より[2]/[3]の方が性能が高い可能性までありそうに見えます。しかし、そんなうまい話本当にあるのかなあ? どうも信じられないのですが…

以前にも書きましたが、同じ局面の対称形をDNNで予測させると、結構ばらばらな数字を返してくるので、

  • [4] Trainを[1]の50エポック目のDNNが予測した8対称形すべての平均にして、ValidateはRayが付けたもの

もテストしてみました。

このブログには書いていませんが、以前Trainのラベルに平均0の乱数を混ぜて学習させてみたことがあったのですが、その時も意外とValidateの数字が大きく悪くはなったりせず(もちろんTrainはノイズの分がっつり悪くなります)、たくさんのデータで鍛えるとそんなものなんだなあと思ったことがあったのですが、今回の[2]は、[4]に平均0の乱数を混ぜたようなものなので、似たような結果と言えるでしょうか、ってじゃあやっぱり精度の高い予測が欲しい時は、平均とって使った方が良さそうですね。うーん、めんどくさ…

[追記 2018/4/30]
続きの記事があります。

囲碁の思考エンジンを作ってみる
http://www.perfectsky.net/blog/?p=389

1回60秒の英単語テストを作ってみました

1回60秒で行う、英単語のテストを作ってみました

六十秒英単語テスト
https://www.60byo.net/

順に出題される単語の意味を、3つの選択肢の中から選んでいくという、よくあるタイプのテストなんですが、正答率ではなく、60秒の間に何回正解できるかを競うところがちょっと変わっていて、もし回答が不正解だったら、3秒間停止して次の問題に進めないようになっています。「正答率だけではなく、回答に掛かった時間も考慮すれば、もっと正確に(高速に)能力が評価できるのでは?」という発想で作ってみました。紙ではできない仕様で、ここはうまくいっているのではと思っています。よかったらぜひ一度、挑戦してみてください。ある程度データが集まったら、テスト結果が上位何パーセントに入るのかとかも、表示させたいと思っています。

このウェブアプリ、作り始めたのはもう2年ぐらい前(もっと前かも?)のことで、おおまかな所はかなりあっさりと制作できたのですが、一番最後にやり始めた肝心の問題の作成がもうめちゃくちゃに大変で、こんなに時間が掛かってしました(というより、こんなのやってられないと途中で何回もぼつにしようとしたんですが…)。信じられないかもしれませんが、のべ数百時間は掛かっています…(泣) いやもう、自分が一番信じられません。本当に馬鹿じゃないのか…

そして、その問題の作成なんですが、かなりいろいろなことを考慮しながら行いましたので、結構気持ちよく回答していけるのではないかなと思います。そのあたりのことも、ここで書こうかと思ったんですが、もういいや。めんどくさい(笑)。

実は今、苔の画像を見て種類を判別するウェブアプリを作っているのですが、今回みたいなことにならないように、とりあえずの性能で良いので、さっさとリリースするようにします。いや本当に、Done is better than perfect. って良い言葉だと思うよ…

[追記 2018/2/7]
テスト結果が上位何パーセントに位置するのかを、表示するようにしてみました。一応、すべての問題を7秒以内に答えた時のみに限定して、テストの途中で諦めてしまったケースなどを、ある程度除外してあります。データがもっと集まれば、再度数字をアップデートする予定ですが、とりあえず今現在、36問正解で上位10%、40問正解で上位5%、45問正解で上位1%に入れるようです。最高記録は48問正解。なかなかすごいですね。問題作った私ですら、これは簡単ではないです。

[追記 2018/4/25]
テスト結果が上位何パーセントに位置するのかのデータを、アップデートしました。37問正解で上位10%、40問正解で上位5%、47問正解で上位1%に入れるようです。最高記録は52問正解でお一人だけ。これは本当にすばらしい反射神経だと思います(笑)。

[追記 2018/8/25]
テスト結果が上位何パーセントに位置するのかのデータを、再度アップデートしました。36問正解で上位10%、41問正解で上位5%、48問正解で上位1%に入れるようです。最高記録は54問正解だそうです…